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ABSTRACT 

The relationships between yield, area, and impedance distribution in 3 different types 

of dual-string DACs are developed. Optimal area allocation and impedance distribution 

strategies for maximizing yield and enhancing performance are introduced. Simulation 

results show that a factor of 2 or more reduction in area for a given yield is possible if typical 

area/impedance allocations are replaced with an optimal area/impedance allocation. 
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CHAPTER 1.  INTRODUCTION 

Dual-ladder resistor string digital analog converters (DACs), which incorporate fine 

string least significant bit (LSB) ladders in parallel between two successive coarse ladder 

taps are widely used  in industry [Boylston, L. E. et al. (2002), Pelgrom, M. J. M. (1990), 

Maloberti, F. et al. (1996), Rivoir, R. et al. (1997)]. When properly designed, the dual-ladder 

structures inherit most of the advantages of a string DAC such as monotonicity, speed, and 

versatility [Boylston, L. E. et al.]. The major advantage of the dual-ladder DACs with a 

reduced number of resistors in the coarse ladder comes at the layout stage where layout 

complexity can be reduced since a common centroid layout of the coarse string resistors will 

effectively cancel linear gradient effects [Maloberti, F. et al. (1996)] for the entire DAC. 

It is well known that layout contributes a very important part to the linearity 

performance of the DAC. Different layout approaches provide different   integral Non-

Linearity (INL) performance. Conventional wisdom suggests that the value of the coarse 

string resistors should be small and the area for the coarse string resistors should be large for 

a properly designed dual-ladder DAC [Plassche, R. van de (2003)]. Although the area 

allocation in the dual-ladder DAC used in [Pelgrom, M. J. M. (1990)] was not given, a die 

photograph shows that the total area for the fine resistor string was approximately 7 times 

that for the coarse string while the ratio of the total series fine resistance to the total series 

coarse resistances was about 38.  Other research results are based upon the assumption that 

the unity fine resistor values are a power of 2 times the unit coarse resistor values [Maloberti, 

F. et al. (1996)]. Surprisingly, authors discussing these heuristic approaches to allocation of 

area and impedance values between the coarse and fine resistors in the strings are silent about 
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the issue of optimality.  An optimal strategy for maximizing INL yield in dual-string DACs 

requires allocation of silicon area and impedances of the coarse ladder and the fine ladder 

strings to minimize the effects random local variations in the sheet resistance on the INL 

performance. Unfortunately, there is a little research suggesting how areas and impedances 

related to the linear performance of the dual ladder DAC when mismatch of resistors is 

considered. As a result, many engineers allocate excessive area to achieve a required yield or 

obtain a poor yield to meet a fixed area target without realizing that the excessive area or the 

yield loss is often due to non-optimal allocation of area and impedance between the string 

ladders. Although INL yield can be improved by increasing area in either the coarse or fine 

ladder, it this is done in a non-optimal way, it will result in an increase in die costs and 

increases in parasitic capacitors which will reduce the speed and thus limit the high 

frequency performance of the circuit. 

As with any string DAC, the linearity performance of the dual-string architecture is 

mainly limited by the presence of process and gradient effects and the random mismatch of 

the resistors in the ladders. If the areas of the resistors are not too large, the gradient will be 

nearly linear (first-order). The effects of first-order gradients on ratio matching can be 

canceled or minimized by appropriate placement, segmentation and the use of common-

centroid layout methods [Hastings, A. (2000)].  

If gradient effects are cancelled, the random mismatch of the resistors in the ladders 

becomes the domain contributor to the nonlinearity performance of this architecture.  This 

mismatch is usually dominated by the local random variations in the sheet resistance 

throughout the body of the resistors.  The resultant random variations in the individual 

resistors are usually modeled as a Gaussian random variable.  It is well-known that 
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maximizing the resistor area is effective for minimizing the effects of local random variations 

on the overall mismatch of the resistors [Pelgrom, M. J. M. (1990)]. Thus, designers 

routinely mark tradeoffs between area and matching accuracy. 

In this work, linearity performance tradeoffs between area in the coarse string and 

area in the fine string and between the resistance values in the coarse string and the resistance 

values in the fine string are discussed. The issue of optimal area and impedance allocation 

strategies for minimizing the INL is addressed. 
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CHAPTER 2.  ALLOCATING AREAS AND IMPEDANCES 

In this chapter, three different types of dual – ladder strings are discussed.  The 

concept of how area and impedance allocation affects the performance of resistor strings can 

be more easily described by considering first a much simpler circuit comprised of two 

resistors in parallel.  This is the topic of the following section.  

2.1  The INL variance of two resistors in parallel 

 R1 
 R2 

 

Figure 1.  Parrallel Resistors 
A simple circuit comprised of two parallel resistors is discussed in this section. This 

circuit is useful for providing insight into the tradeoffs between area, impedance values and 

performance of resistor circuits that are plagued by local random variations in the sheet 

resistance.  The normalized variance of the equivalent resistance of the two parallel resistors 

will be characterized in detailed. The results will provide insight into the analysis and 

optimization of the integral nonlinearity (INL) of the dual ladder resistor string that is 

discussed in the next section. 

Consider the two resistors shown in the Figure 1 where the resistance values and 

active layout areas are R1, R2, A1 and A2.  The equivalent resistance of the parallel 
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combination is R
21

21

RR
RR
+

= . For notational convenience, the variables u and v are defined by 

the expressions  

 
TOTA
Au 1=  (1) 

 
1R

Rv =  (2) 

where ATOT is the total area of two resistors.  It is apparent that (u,v) are restricted to the open 

unit square in the u-v plane. 

If it is assumed that only linear gradient affects are present in the layout of the two 

resistors and if a common centroid layout method is used, linear gradient effects in are 

cancelled and each of the resistors can be decomposed into the sum of the nominal resistance 

RN and a component due to the local random variation in the sheet resistance RR.  

Mathematically, for each resistor, this relationship can be repressed as i iN iRR R R= + where 

RiN is the nominal value of the resistance at the geometric centroid of the layout and RiR is 

the random component of Ri. The random components of R1 and R2 are generally assumed to 

be uncorrelated.  For useful resistors in matching-critical applications, it can be assumed the 

RiR is small compared to RiN. With this notation, the equivalent resistance can be expressed 

as   

 
( )( )
( )

1 1 2 2

1 1 2 2

N R N R

N R N R

R R R R
R

R R R R
+ +

=
+ + +  (3) 

By factoring out the nominal value of resistors, (3) can be rewritten as: 
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( )

1 2
1 21 2

1 2 1 2
1 2

1 1

1

R R
N NN N

N N R R
N N

R R
R RR RR

R R R R
R R

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠=
+ ⎛ ⎞+

+⎜ ⎟+⎝ ⎠

 (4)  

It is apparent from (4) that R is a random variable that is nonlinearly dependent upon 

the random variables R1R and R2R.  Because of this nonlinear relationship, the probability 

density function of R becomes unweildly making it difficult to get much insight into the 

random nature of R.  We will now focus on linearizing the random parts of R so that the 

statistical properties of R can be determined. Since the random part of the resistors is 

assumed to be small compared to the nominal part, the term in the denominator involving the 

random components can be expanded in a Taylors series and truncated after first-order terms 

to obtain the expression  

 R ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
≈

NN

R

NN

R

N

R

N

R

NN

NN

RR
R

RR
R

R
R

R
R

RR
RR

21

2

21

1

2

2

1

1

21

21 111  (5) 

If second-order terms are neglected, (5) can be rewritten as  

    R ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

−++
+

≅
NN

R

NN

R

N

R

N

R

NN

NN

RR
R

RR
R

R
R

R
R

RR
RR

21

2

21

1

2

2

1

1

21

21 1  (6) 

It can be observed from (6) that the expression for R has been linearized in terms of 

the random variables R1R and R2R.  It follows that the normalized random component of the 

resistance can be expressed as 

 
N

R

R
R

( ) ( )
2 11 2

1 1 2 2 1 2

N NR R

N N N N N N

R RR R
R R R R R R

= +
+ +  (7) 
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Equation (7) is now in the form of a weighted sum of uncorrelated random variables. 

It follows from (7) that the variance of the normalized local random component can be 

expressed by 

 
2

21

12
2

21

222

2

2

1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
NN

N

R
R

NN

N

R
R

R
R RR

R
RR

R

N

R

N

R

N

R
σσσ  (8) 

It is well  known that the normalized variance of a resistor is inversely proportional to 

the layout area of the resistor [Hastings, A. (2000), Lane, W.  and Wrixon, G. (1989), Lin, Y.  

and Geiger, R. (2001)].  The proportionality constant is charaterized by the process parameter 

NAρ .  This proportionality can be expressed as   

 
2
ρN2 A

iR

iN

R
iR A

σ =  (9) 

Thus, it follows from (A1), (A2) and (6)  that the normalized variance can be written 

as  

 ( ) ( )( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+= 22

2
ρN2 1

u-1
1

u
1A

vv
ATOTR

R

N

R
σ  (10) 

This variance of the normalized resistance can be minimized by equating the partial 

derivatives with respect to both u and ν to zero.  It follows from (7) that the partial 

derivative of the variance of the normalized resistance with respect of u is given by 

the expression  

 

2
R

N

R
R

u

σ∂

∂ ( )

2
ρN

22

A ( )( 2 )
u 1-uTOT

u v u v uv
A

⎡ ⎤− + −
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (11) 
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Correspondingly, the partial derivative of the variance of the normalized resistance with 

respect to v can be expressed as  

 
( )

2
2
ρNA 2 2

u 1-u

R

N

R
R

TOT

v u
v A

σ∂
⎡ ⎤−

= ⎢ ⎥∂ ⎣ ⎦
 (12) 

It thus follows from (11) and (12) by setting the partial derivatives to 0 that that a 

minimum will be obtained if u and v satisfy the relationship 

 u = v  (13) 

This result can be summarized in the following theorem. 

Theorem 1:   

For a fixed total area of two resistors denoted as R1 and R2, the variance of the 

random component of the normalized resistance of the parallel connection of the two 

resistors assumes a minimum value if and only if the ratio of the area of R1 to the total 

resistor area is equal to the ratio of the resistance of the parallel combination of the two 

resistors to the resistance of R1.  

The locus of points in the u-v plane that provides minimum variance is a straight line 

as shown in Figure 2.  
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Figure 2.  A locus of critical points 
Substituting u = v into (10), if follows that the minimum variance or the normalized 

resistance is given by 

 
2
ρN2 A

R

N MIN

R
TOTR

A
σ =   (14) 

 The minimum variance is dependent upon both the process parameter and area. To 

establish an appreciation for the penalty incurred if non-optimal area partitioning or non-

optimal resistance partitioning is used, the normalized variance is defined as 

 

2

2 2
2 2

ρNA

R

N

RR

NRN NORM
N MIN

R
R TOT

RR
RRR

R

A
σ

σ σ
σ

= =   (15) 

 Deviations in the normalized variance of the normalized resistance from the optimal 

value for different resistance ratios and different area ratios are summarized in Table 1.  
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Table 1.  Normalized Variance with Different Impedances And Areas 

R1/ (R1+ R2) 
A1 / (A1 + A2) 

0.01 0.25 0.5 0.75 0.99 

0.01 98.0 3.9 1.9 1.3 1 

0.25 56.3 2.3 1.3 1 6.8 

0.5 25.3 1.3 1 1.3 25.3 

0.75 6.8 1 1.3 2.3 56.3 

0.99 1 1.3 2.0 3.9 98.0 

 

If (u,v) is on the optimal straight line, the normalized value is equal to 1 as indicated 

by the corresponding diagonal entries in this table. But it can be observed that if either the 

area partitioning or the resistance partitioning or both differ significantly from their optimal 

values, the penalty in variance is dramatic as can be observed by the entries in  the upper left 

and the lower right parts of this table.    

The above analysis shows that, for the same values of resistance and area of the 

circuit, as long as the ratio of the layout area of one resistor to the total area of the circuit is 

equal to the ratio of the equivalent resistance to its resistance, the variance of the equivalent 

random resistance is minimum. Correspondingly, if the layout area of one resistor is very big 

or very small and the resistance values are not sized favorably, the variance will be very 

large.  As expected, the value selected for the total resistance is arbitrary provided the 

resistance partitioning and area partitioning is done in an optimal way.  
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2.2  The INL variance of dual ladders R String DAC 

Reqi

R1

R2

A1

A2

R2 R2 R2

R2R2R2R2

Vm

1
12 Rn 2

122 Rn −

 

Figure 3.  A Dual Resistor String Ladder 

In this section, the performance of a dual –ladder resistor string DAC is characterized. 

Specifically, the effects of area and resistance partitioning between the coarse and fine strings 

on the variance of the integral nonlinearity (INL) are investigated.  

The widely-used dual-string ladder structure is shown in Figure 3. The coarse ladder 

is comprised of 12n coarse resistors each of resistance value R1 and area A1.  A fine string is 

connected in parallel with each coarse-string resistor.  Each fine string provides 22n tap 

voltages as shown in Figure 3. Each resistor in the fine string ideally has a resistance of R2 
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and an area of A2.  If the tap voltages are selected with switches and if this selection is done 

in such a way that any one of the tap voltages can be selected with a Boolean input variable, 

the dual-string ladder forms an n-bit  DAC where n = n1+n2. For notational convenience, the 

switches and the Boolean input variables are not shown in Figure 3 but throughout this thesis 

no attempt will be made to distinguish between the dual-string ladder and the corresponding 

DAC that is derived from this ladder.  Since emphasis will be focused exclusively on the 

effects of the dual-string ladder on the performance of the DAC, the switches and the 

Boolean logic needed to form the DAC from the dual-string ladder will be assumed to be 

ideal throughout this thesis. 

With this understanding, the total area of the DAC is  

 ( )1 1 2
1 22 2 2= +n n n

TOTA A A   (16) 

Intergral nonlinearity (INL) error is used to measure the static accuracy of the 

converter. For a n-bit DAC, the INLm of the tap voltage m ( nm 20 <≤ ) is the difference 

between the voltage at the tap m and the idea voltage 
2
REF

n

Vm  in LSB. The INL is the 

maximum of INLm for nm 20 <≤ . 

The variance of the INLm on each of 2n tap voltages is derived and the allocation of 

areas and resistor values on both ladders is obtained that provides the minimum value of the 

maximum error in the INL profile.  

2.2.1  Normalized variance of the equivalent tap resistance 

As was the case for the two resistor network, it is convenient to normalize the 

impedances and the areas in the dual-string ladder.  The normalization factors x and z are 
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defined to represent the ratio of the coarse ladder area to the total area of DAC and the ratio 

of the total equivalent resistance of the DAC to the total resistance on the coarse ladder  

 
1

12n

TOT

Ax
A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (17) 

  
1

12
TOT

n

Rz
R

=  (18) 

where A1 is the area of a single coarse resistor and ( )( )21
21 2//2 RRR nn

TOT = .  

The resistance in a coarse ladder tap i is defined to be the parallel combination of the 

coarse resistor in position i and the fine resistors paralleling this coarse resistor. Thus, the 

equivalent resistance in coarse ladder tap i can be expressed as 

 

n 2

n2

2

1i 2,ij
j=1

eq,i 2

1i 2,ij
j=1

R × R
R =

R + R

∑

∑
 (19) 

If a common centroid layout is used, the gradient component of this equivalent 

resistor can be ignored and resistor can be decomposed into the sum of the nominal 

resistance and the component due to the local random variations.   It thus follows that 



www.manaraa.com

 14  

 

 

n 2

n 2

2

2R,ij
j=11R,i

n2
1N 2N

n2
1N 2N

eq,i n2 2
1N 2N

1R 2R,ij
j=1

n2
1N 2N

R
R

1+ 1+
R 2 R

2 R RR =
R +2 R

R + R
1+

R +2 R

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 (20) 

where the subscript N is used to denote the nominal part of a resistor and the subscript R is 

used to denote the random part of the resistor.  It is apparent that the random variable Reqi is 

itself nonlinearly dependent upon a large number of separate  random variables. Following 

the approach used in the two resistor case discussed in the previous section, we will now 

linearize the random component of Reqi.  With this goal in mind, the denominator of (20) can 

first be expanded in a Taylors series. Since the random components of all random variables 

in (20) are small compared to their nominal componnets, after multiplying out the resultant 

product terms in the numerator and truncating the resultant expression after the first-order 

terms, we obtain: 

n n2 22 2

n 2R,ij 2R,ij2
j=1 j=11R,i 1R,i1N 2N

eq,i n n n n2 2 2 2
1N1N 2N 2N 1N 2N 1N 2N

R R
R R2 R RR 1+ + - -
RR +2 R 2 R R +2 R R +2 R

⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟≈ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑
 (21) 

It follows that the ratio of the equivalent resistance to the normalized equivalent 

resistance is 
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n 22

n 2R,ij2
eq,i j=11R,i 2N 1N

n n n2 2 2
eqN,i 1N,i 2N1N 2N 1N 2N

R
R R 2 R R11+ +
R R RR +2 R 2 R +2 R

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟≈ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

∑
 (22) 

Since the random variables in (22) are uncorrelated, it follows that the normalized 

variance of the equivalent resistance in any coarse ladder tap can be expressed by 

2 2
2

2 2 22 1 2
21 22 2 2

1 2 1 21 2

2 1= 2
2 2 (2 )

σ σ σ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

n
nN N

R R Rn n neq R R
N N N NR RR N NeqN

R R
R R R R (23) 

It follows from (14), (15) that (23) can be written as 

2 2n n21 2
ρN2 2N TOT 1N TOT

R n n n neq 2 1 2 1
TOT 1N 2N 1 1N 2N TOT 1ReqN

2 A 2 R A R Aσ = +
A R +2 R 2 A R +2 R A -2 A

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (24) 

2.2.2  Variance of the  INL 

Up to this point emphasis has been focused on the statistical characterization of the 

resistors in the DAC.  In this section emphasis will be directed to the statistical 

characterization of the INL. The statistical characterization of the INL of the dual-string 

DAC itself is very challenging since it is an order statistic of 2n random variables. Emphasis 

in this section will focus on the much easier but still tedious task of  characterizing the 

individual INLm variables.    

The output voltage at the tap  

 qpm n +×= 22   (25) 

for 120 np <≤   and  220 nq <≤ ,  of the fine string ladder can be  expressed as    
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n n1 2

q

2jp
j=1REF

m eq,i eq,p+12 2
i=1

eq,i 2j
i=1 j=1

R
VV = R +R

R R

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑
∑

∑ ∑  (26) 

Neglecting the process and gradient components of the resistors, each resistor can be 

decomposed into the sum of a normial resistance and the local random resistance. It thus 

follows from (26) that the tap voltage can be expressed as : 

n n1 2

1 2
1 2

q

2Rj
j=1

2Np
2N

eqR,i
j=1 eqR,p+1REF

m eqN eqN2 2
eqN eqN

eqR,i 2Rj
n i=1 j=1n

eqN n 2N n
eqN 2N

R
qR 1+

qR
R

RVV = pR 1+ +R 1+
pR R

R R
2 R 1+ 2 R 1+2 R 2 R

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎛ ⎞⎢ ⎥⎝ ⎠⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎝ ⎠⎜ ⎟ ⎜ ⎟
⎢⎜ ⎟ ⎜ ⎟
⎢⎜ ⎟ ⎜ ⎟
⎢⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑

∑ ∑ ⎥
⎥
⎥
⎥

(27) 

where R2N and R1N are  as defined previously and ReqN=R1N//(2n
2R2N).  As was the case in the 

previous section, the expression for Vm is a highly nonlinear function of the random resistive 

variables.  But, since in practical applications the random component of each resistor will be 

small compared to its nominal part, this nonlinear function can be linearized.    

As part of the linearization, each factor of the denominators can be expanded in a 

Taylors series and truncated after the first-order terms to obtain: 

n 2 nn1 1

2

1 2 1

q 2p 2 2

2Rj 2RjeqR,i eqR,i eqR,i
eqR,p+1 j=1 j=1nREF i=1 i=1 i=1

m n n nn
eqN eqN eqN 2N 2N eqN

R RR R RRVV = 2 p 1+ 1- +q 1+ 1+ 1- 1-
2 pR 2 R R qR 2 R 2 R

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑∑ ∑ ∑
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎟
⎢ ⎥⎣ ⎦

 (28) 
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By expanding equation (28) and neglecting higher-order terms involving the random 

variables, it follow that  

n2n n1 1

2 2 2 1 2 1

q 2p 2 2

2Rj 2RjeqR,i eqR,i eqR,i
eqR,p+1 j=1 j=1n n n -n -n -nREF i=1 i=1 i=1

m n
eqN eqN eqN 2N 2N eqN

R RR R RRVV = 2 p+q+2 -2 p +q + -2 q -2 q
2 R R R R R R

⎡ ⎤
⎢ ⎥

⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠
⎢ ⎥
⎣ ⎦

∑ ∑∑ ∑ ∑
(29) 

The INL profile in LSB (VLSB =VREF/2n) is the difference betweeen Vm and the ideal 

tap voltage 
2
REF

n

Vm  in LSB. In the equation (29), the first two items of the sum are equal to 

m. Therefore, the INLm can be written as a linear weighted sum of uncorrelated random 

variables as: 

 
( ) ( )

( ) ( )

, , 12 2 1 1 2 1 1

1

1 22 2
, 2 , 2 ,2 1 1 2 2

2 1 12 2

= 2 2 2 2 2

2 2 1 2 2

p
n n n n n n neqR i eqR p

m
i eqN eqN

n n
q

n n n n neqR i R i R i

i p i i qeqN N N

R R
INL p q q p q

R R

R R R
p q q q

R R R

− − − − +

=

− − − −

= + = = +

⎛ ⎞ ⎛ ⎞
− × − × + − × − ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+ − × − × + − × − ×

∑

∑ ∑ ∑
 (30) 

Since the random variables in (30) are uncorrelated, the variance of INLm can be 

expressed as: 

 
( ) ( )

( ) ( ) ( )

2 2
2 2 2 2 1 1 2 1 1 1

2 2 22 22 1 1 2 2 2
2
2

= 2 2 2 2 2 (2 1)

2 2 1 2 2 2

m

n n n n n n n n
INL ReqR

ReqN

n n n n n n
R R
R N

p q p p q p

q p q q q q q

σ σ

σ

− − − −

− − − −

⎡ − × − × + × + × − −⎢⎣

⎤ ⎡ ⎤+ − × − × + − × + × −⎥ ⎢ ⎥⎦ ⎣ ⎦

 (31) 

It follows from (16) and (17) that  2

2

2

N

R

R
Rσ  can be expressed as:  

 )1(
2=

2

2

2
2

2

2 xA
A

A
A n

TOT

NN

NR
RR −

×= ρρσ  (32) 

From (24),(31), and (32), it follows that  
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( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 =σ
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎣⎣ ⎦

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎦ ⎣ ⎦

1

m

n 2 22 2 2n n -n -n n -n -n nρN 2 2 1 1 2 1 1 1
INL

TOT

2 n2 2n -n -n -n -2n nρN 22 1 1 2 2 2

TOT

2 A 1-zz + 2 -p×2 -q×2 p+ p×2 +q×2 (2 -p-1)
A x 1-x

A 2+ q-p×2 -q×2 + q 1-q×2 +q ×2 2 -q
A 1-x

 (33) 

Relative size and impedance information is carried in the two variables x and z.  For 

convenience, the normalized variance of INLm is defined as: 

 2 2
2 2 2

ρN

( )
2 A m

TOT
NORM m INLn

AINLσ σ−=  (34) 

The function (33) can be minimized by differetiating (33) with respect to x and z and 

setting the patial derivative to zero.  Thus differentiating )(2
mNORM INLσ with respect to z, we 

obtain 

 ( ) ( ) ( ) ( )
( )

22 2 2 2
1 2 2 1 1 2 1 1 2 1 1 1

2
( , ) = 2 2 2 2 2 2 2 2 (2 1)

1
ρσ − − − − − − ⎡ ⎤−∂ ⎡ ⎤− × − × + − × − × + × + × − − ⎢ ⎥⎢ ⎥∂ −⎣ ⎦⎣ ⎦

n n n n n n n n n n nN nINLm

TOT

A z x
x z p q p q p q p q p

z A x x
 (35) 

Setting 0),(
2

=
∂

∂ zx
z
INLmσ , it follows that  x = z.  Notice this solution is independent of m 

and independent of A2
ρN /ATOT.  Therefore, for a given x, the normalized variance of the 

local random component in the dual-string DAC is minimum if the ratio of the total 

impedance to the coarse ladder impedance is equal to the ratio of the layout coarse area to the 

total area of the circuit.  This is summarized in the following theorem. 

Theorem 2: 

For a given x and for all m, the variance of INLm for a dual string DAC is minimized 

when z = x where x = AC/ATOT and z = RTOT/RC. 

Although for a given value of x, a local minimum of the variance of INLm in the 

variable z can be obtained, there is no local minimum in the open unit square in the (x,z) 
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plane.  But, it can also be shown that if x = z, then the variance decreases with x.  And, in the 

latter case, the decrease in variance as x approaches 0 is very small.   These observations can 

be summarized in the following theorems. 

Theorem 3: 

For all m, the variance of INLm for a dual string DAC does not assume a local 

minimum in { (x,z)| 0 < x < 1, 0 < z < 1 }, where x = AC/ATOT and z = RTOT/RC. 

Theorem 4: 

For all m, the variance of INLm for a dual string DAC decreases monotonically as x 

approaches 0 on the x = z locus where x = AC/ATOT and z = RTOT/RC. 

Theorem 5: 

The derivatives of the variance of INLMAX
 
 for a dual string DAC  along the x=z line 

in the x-z plane is small for 0 < z < ε, where 0 < ε «1  where x = AC/ATOT and z = RTOT/RC.  

Although Theorem 5 states that the variance changes very slowly along the x=z line 

in the x-z plane, it should be emphasized that this Theorem does not state that the variance 

changes very slowly near the origin of the x-z plane and, in fact, it can change significantly 

near the orgin at points that are not on the x=z line. 

The open unit square in the x-z plane is shown in Figure 4 along with the x = z line 

which represents the optimal value of z for a given value of x.  It thus follows that if a design 

has paramaters (x,z) that are close to the x = z line, the variance of  INLMAX should be near 

optimal.  A tight lower bound on the variance occurs on the boundary of the unit square at 

the point (0,0).   As Theorem 5 indicates, when operating on the x = z line near the orgin, the 
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variance of INLMAX should be near the tight lower bound.   It will be shown in Chapter 3 that 

when operating with paramaters that deviate significantly from the x = z line, the variance of 

the INLMAX may be significantly larger than optimal.  

 

Figure 4.  Region of Operation for Dual-String DAC in the x - z plane 
As an example, the minimum INL as a function of z, for a 10-bit dual ladder string 

DAC with 4 bits allocated to  the coarse string is ploted in Figure 5 for different values of x. 

From this plot it is apparent that the local minimum is rather shallow for x around 0.5 but 

becomes much steeper for extreme values of x approaching 0 or 1.  It is apparent that if a 

non-optimal allocation of area or impedance is used, the penalty in the variance, and 

correspondingly the yield, can be quite large.  It is also shown the smaller values of x are, the 

smaller variance is obtained although the differences in the minimum INL do not change 

dramatically as x is changed. If there is no coarse ladder, which would correspond to x=z=0, 

σ(INL) will assume its minimum value.  But we can not eliminate the coarse ladder because 

without the coarse ladder, the gradient effects would need to be managed by the fine string 
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resistors and common centroid layouts that cancel the gradient effects would be difficult to 

realize if the resolution of the DAC was very large. 

0  1  
0  

1  

2  

  

z

( )maxINLNORMσ

 

Figure 5.  The minimum of ( )maxINLNORMσ  for a given z 

A plot of the normalized variance for different values of x along the x=z locus is 

shown in Figure 5.  From Figure 5 it can be sent that the minimum normalized standard 

deviation is 512 but the minimum is very shallow on the x = z locus with an increase above 

the minimum of only 3% for x = z = 0.5 and of only 48% even when x=z=0.95.  Thus, the 

benefits of having extreme values of x and z provided x = z are not substantial.  But, for a 

given z, when x deviates from z, the penalty in the variance and correspondingly the yield is 

significant.  This can be seen in Figure 6 where the maximum variance is plotted versus x for 

z fixed at 0.5. 
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0  1
0

2

4

z

x=0.95 x=0.01

x=0.1

x=0.5

( )maxINLNORMσ

 

Figure 6.  ( )maxINLNORMσ  w.r.t. x 

2.3  The INL variance of Interpolation DAC with buffer 
In this section, a different dual-ladder DAC is considered.  This structure uses buffers 

to connect the fine string to the coarse ladder thus dramatically reducing the total number of 

resistors needed by the fine string.  This approach also eliminates the loading of the coarse 

string by the fine string at dc. This structure is shown in Figure 7.  As in the previous section, 

emphasis will be placed on characterizing and minimizing the variance of the INLm in this 

section.   

For the buffered structure of Figure 7, the coarse ladder consists of 12n coarse 

resistors of resistance value 1R and area A1.  The fine string is comprised of 22n resistors, each 

with a resistance of R2 and an area A2.  For each connection of the intropolator to the coarse 

string, the interpolator provides to the output 22n tap voltages.   

 



www.manaraa.com

 23  

 

R1

R1

R1

R1

RF

RF

RF

RF

+

-

+

-

VREF

R2

R2

R2

R2

Vout

 

Figure 7.  The Interpolation DAC with buffers 
As for the dual ladder structure in the previous section, the total number of tap 

voltages is 2n, where n=n1+n2. The variance of the INLm on each of 2n tap voltages will be 

derived and the allocation of area and resistance on both ladders to obtain the minimum value 

of the maximum error in the INL profile will be obtained.  

Let x be the ratio of the coarse ladder area to the total area of DAC,  

 
1

12n

TOT

Ax
A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

     (36) 



www.manaraa.com

 24  

 

where ATOT = 2n1A1 +  2n2A2. The output voltage at the tap qpm n +×= 22 , 120 np <≤  

and 220 nq <≤ ,  of the fine string ladder is expressed as: 

n1 n2

q
2 jp j 1REF

m 1,i 1,p 12 2i 1
1,i 2 j

i 1 j 1

R
VV = R R

R R

=
+

=

= =

⎡ ⎤⎛ ⎞
∑⎢ ⎥⎜ ⎟

⎢ ⎥⎜ ⎟+∑⎢ ⎥⎜ ⎟
∑ ∑⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

 (37) 

Neglecting the process and gradient component of the resistor, it follows that 
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= (38) 

where the subscripts R and N refer to the random part and the nominal part of the resistances.  

This function is highly nonlinear in the random components of the resistances but since the 

random components are assumed small compared to the nominal part of the resistors, this 

function can be linearized. 

To linearize this function, first each factor of the denominator can be expanded in 

Taylors series and truncated after the first-order terms to obtain: 

 n 2n1 n1

2

1 2 1

q 2p 2 2
2Rj 2Rj1R,i 1R,i 1R,i1R,p 1 j 1 j 1nREF i 1 i 1 i 1

m n n n n
1N 1N 2N1N 2N 1N

R RR R RRVV = 2 p 1 1 q 1 1 1 1
pR R qR2 2 R 2 R 2 R

+ = == = =

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ∑ ∑⎢ ⎥⎜ ⎟∑ ∑ ∑⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + + + − −⎜ ⎟⎜ ⎟ ⎢ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎝ ⎠⎢ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎝ ⎠⎣ ⎦

⎥
⎥
⎥

 (39) 



www.manaraa.com

 25  

 

Expanding  equation (39) and neglecting the higher-order terms, we obtain the 

following equation: 

21 1

2 2 2 1 2 1

22 2

2 21 , 1 , 1 ,
1 , 1 1 11 1 1

1 1 1 2 2 1

= 2 2 2 2 2
2

+ = =− − −= = =
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⎢ ⎥
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nn nqp

Rj RjR i R i R i
R p j jn n n n n ni i iREF
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N N N N N N

R RR R RRVV p q p q q q
R R R R R R

 (40) 

The INL profile in LSB (VLSB =VREF/2n) is the difference betweeen Vm and the ideal 

tap voltage mVREF/2n in LSB. In equation (40), two first items in the brackets are equal to the 

order of the tap m. Thus, the INLm can be written as: 
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(41) 

Equation (41) is now the weighted sum of uncorrelated random variables and thus, 

the variance of INLm can be expressed as: 
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This variance is dependent upon the total area, ATOT, and the process parameter AρN. 

By normalizing the variance by A2
ρN /ATOT , the effects of x and m on the INLm  can be 

practically depicted. With this normalization, (43) simplifies to 
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To find the optimum of area allocation, the derivative of (44) with respect to x is 

taken and set to zero. Thus, differentiating )(2
mNORM INLσ  with respect to x, we obtain: 
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2.4 The INL variance of Interpolation Resistor String DAC with 
buffer resistors 

 

A third variant of the dual string DAC is shown in Figure 8.  Conventional wisdom 

teaches that this structure eliminates the need for the buffers of the previous structure and 

uses extra “replacement” resistors to prevent having the interpolating fine-string resistor load 

a coarse string resistor.  Although the nominal value of the “replacement” resistor is ideally 

equal to that of the fine interpolation string, the area can usually be made much smaller.  In 

this section, the DAC of Figure 8 the variance of INL of this DAC will be characterized. 

 The coarse ladder is consists of 12n coarse resistors of resistance value 1R and area A1.  

A fine string is connected in parallel with only one coarse resistor at any time and determines 

22n tap voltages. Each replacement resistor R3, having a nominal resistance of 2n2R2 and an 

area of A3, is connected in parallel with a resistor of the coarse ladder R1 if the fine string 

interpolator is not connected  to a given coarse ladder resistor.  Thus, there is always 2n1-1 

replacement resistors along with the fine-string interpolation circuit connected in parallel 

with each of the coarse string resistors. 
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Figure 8.  Dual Resistor String with Buffer Resistors 
As was the case for the two previous dual-string resistor arrays, the total number of 

tap voltages is 2n, where n=n1+n2. The variance of the INLm on each of 2n tap voltages will 

be derived and the allocation of areas and resistance values on both ladders will be given that 

provides a minimum value of the maximum error in the INL profile. 
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2.4.1  The normalized variance of resistances 

In contrast to the previous two circuits where the switch impedance did not affect the 

static performance of the DAC, in this structure, the switch impedance is in series with either 

the replacement resistor or the fine-string interpolation resistor and, as such, contributes to 

the resistances in the ladder.   To keep the analysis manageable, it will be assumed that the 

switches are all ideal and have 0Ω on impedance.    

For convenience, define Req2 = R1// (2n2R2) and Req3 = R1// R3. Since ideally R3 = 

2n2R2, it follows that Req2 = Req3.  Thus, the nominal value of these resistors are equal to each 

other, Req2N = Req3N = ReqN. As in the Section 2.2, from (24), the normalized variance of the 

equivalent resistance Req2 is given by the expression 
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2 2 2
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2 2
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  (49) 

Similarly, the normalized variance of the equivalent resistance Req3 is 

 

2 22 2
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1 1 3 3
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 (50) 

2.4.2  The variance of INL 

Define  z to be the ratio  

 
1

12 R
R

z n
TOT=  (51) 

 and aAk, k = 1, 2, 3, to be the total area of the coarse string, the fine string, the replacement 

resistors R3, over the total resistor area:  
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 The output voltage at the tap qpm n +×= 22 , 120 1 −≤≤ np   and  120 2 −≤≤ nq ,  of the fine string 

ladder for the case p > 0; q > 0 can be expressed as 
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 (55) 

Neglecting the process and gradient components of the resistor, it follows that 

 

n1

1

1

n2

2

2

REF
m p 2

eq1R,i eq1R,i eq2R,p 1
i 1 i p 2n

eqN n
eqN

q
2Rj

j 1
2Np 2N

eq1R,i eq2R,p 11
eqN eqN 2eqN eqN

2Rj
j 1n

2N n
2N

VV =
R R R

2 R 1
2 R

R
qR 1

qR
R R

pR 1 R 1
pR R

R
2 R 1

2 R

+
= = +

=

+

=

×
⎛ ⎞

+ +∑ ∑⎜ ⎟
⎜ ⎟⎡ ⎤ +⎣ ⎦ ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
∑⎜ ⎟

⎜ ⎟+
⎜ ⎟⎛ ⎞

∑ ⎜ ⎟⎜ ⎟ ⎛ ⎞ ⎝ ⎠⎜ ⎟+ + +⎜ ⎟⎜ ⎟ ⎛⎜ ⎟ ⎝ ⎠ ∑⎜ ⎟
⎝ ⎠

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (56) 

where the subscripts R and N denote the random part and the nominal part of the 

corresponding random resistance value.  As in the previous sections, Vm is highly nonlinear 

in the random variables but since the random part of the resistances is assumed to be small 
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compared to the nominal part, this equation can be linearized.  As the first step in the 

linearization process, each factor of the denominator will be expanded in a Taylors series 

truncated after the first-order terms to obtain: 
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 (57) 

Expanding  equation (52) and neglecting second-order and higher terms in the 

random variables, we obtain the following expression: 
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 (58) 

This expression is now in the form of a weighted sum of uncorrelated random variables. 

The INL profile in LSB (VLSB =VREF/2n)is the difference betweeen Vm and the ideal 

tap voltage [m(VREF/2n)] in LSB. The first two terms in the brackets of equation (53) are 

equal to the tap number m. Thus, the INLm = Vm - mVREF/2n can be written as: 
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 (59)  

Thus, the variance of INLm can be expressed as: 
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and rearranging the order of terms in (55), we get the following equation: 



www.manaraa.com

 33  

 

( ) ( )

( ) ( ) ( )

( )

22 2 212 2 2 1 1 2 1 1 1

1 1

22 2 222 1 1 2 2 2 2
2

2

2
2

2 1 1
2

2

= 2 2 2 2 2 (2 1)

2 2 2 1 2 2 2
2

2 2
2

m

n n n n n n n neq NN
INL

N

n n n n n n nN
n

n n neqN
n

N

RA
p q p p q p

A R

A
q p q q q q q

A

R
q p q

R

ρ

ρ

σ − − − −

− − − −

− −

⎛ ⎞ ⎡ − × − × + × + × − −⎜ ⎟ ⎢⎣⎝ ⎠
⎡ ⎤ ⎧⎤ ⎡ ⎤+ − × − × + − × + × −⎢ ⎥ ⎨⎥ ⎢ ⎥⎦ ⎣ ⎦⎩⎢ ⎥⎣ ⎦

⎫⎛ ⎞ ⎡ ⎤+ − × − ×⎜ ⎟ ⎬⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

( ) ( )
22 2 2

2 2 1 1 2 1 1 1

3 3

2 2 2 2 2 (2 1)n n n n n n n neqNN

N

RA
p q p p q p

A R
ρ − − − −

⎪

⎪⎭

⎛ ⎞ ⎡ ⎤+ − × − × + × + × − −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

 (64) 

For notational convenience, define M1, M2 ,M3, and M4 by the expressions 
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The paramaters M1..M4 are dependent upon the index number but independent of  

model parameters, resistance values, and area. 

Then (59) can be written as: 
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CHAPTER 3.  SIMULATION RESULTS 

In the previous chapter, analytical formulations were presented that characterizes the 

statistical performance for three different types of dual – ladder DACs.   These parametric 

formulations provide the INLm at each DAC output code and are strongly a function of the 

number of bits of resolution in the coarse string, the number of bits of resolution in the fine 

string, as well as the impedance and area allocations between the coarse and find string 

resistors.  As such, it is challenging to obtain a practical understanding of the benefits and 

limitations of various area and impedance allocation schemes.  In this chapter, computer 

simulations are presented that give insight into the benefits obtained by optimally allocating 

impedances and area between the coarse and fine resistor strings. 

3.1  Simulation results of dual-ladder R String 

In this section the performance of the dual-ladder R String of Figure 3 will be 

investigated.  Mathematically, the INL performance of this structure is characterized by 

equation (33).   

3.1.1  10-bit dual-ladder R-string DAC with 4-bit MSB ladder 

Initially, the performance of a 10-bit dual-ladder R-string DAC with a 4-bit MSB 

ladder will be considered.  This structure is defined by the parameters n1=4 and n2=6 in the 

variance of INLm given in equation (22).  This variance is dependent upon the total area, 

ATOT, and the process parameter AρN. By normalizing the variance by A2
ρN /ATOT , the effects 

of x,z, and m on the INLm  can be practically depicted.  With this normalization, (33) 

simplifies to  
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  (70) 

where x, z, and m are as defined in (17), (18) and (25).  

The normalized standard deviation of the INLm for x and z  ∈ {0.01, 0.5, 0.95} are 

shown in Figure 9, 10, 11. From these plots, it is apparent that the INL assumes a maximum 

near the mid-code tap voltage corresponding to code 512. Consistent with Figure 4, it can be 

seen from Figure 9 that the maximum normalized standard deviation for x = z = 0.01 is very 

close to the global minimum of 1.  The plot of Figure 9 which is for x small corresponds to 

the situation where most of the area is allocated to the fine resistors.   Figure 10, where x = 

0.5, corresponds to the situation where equal area is allocated to the coarse and fine resistor 

strings whereas Figure 11, where x=0.95 represents the situation where most of the area is 

allocated to the coarse string.  

In Figure 9, when z is large, the voltage at the taps of the coarse string plays the major 

role in the nonlinearity and since the area of the coarse resistors is small, there is a large 

variance in the coarse tap voltages and that causes the INL to be large throughout most of the 

output voltage taps.  Correspondingly, in the same figure, when z is small, the impedance at 

the coarse string plays only a small role in determining the overall INL and since most of the 

area is allocated to the fine string, the INL is very good.    

In Figure 11, when z is large, the impedance at the taps of the coarse string plays a 

major role in the nonlinearity and since the area of the coarse resistors is large, there is a 

small variance in the coarse tap voltages that causes the INL at the tap voltages to be small 

for most of the coarse voltage taps.  But since there is little area in the fine resistors, the 
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variance in the voltage at intermediate nodes in the fine string gets rather large.  

Correspondingly, when z is small, the impedance at the taps of the fine string plays a major 

role in the nonlinearity and since the area of the fine resistors is small, the variance is large at 

most of the fine output voltage taps. 

It is apparent from these plots that under certain conditions, there is considerable 

“ripple” in the INL.  This ripple occurs when the relative area in the fine string is small (z is 

large). When the ripple is present, the local maxima and the local minima occur at coarse 

ladder taps or at mid tap locations of the fine ladder depending upon how the resistance and 

area is allocated. There are a total of 112 +n  critical tap points in the array. 

 
Figure 9.  INL profiles of the dual ladder DAC for x = 0.01 

( )mNORM INLσ

tap voltage 
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Figure 10.  INL profiles of the dual ladder DAC for x = 0.5 

 

 
Figure 11.  INL profiles of the dual ladder DAC for x = 0.95 

It can also be seen that the INL deviation increases with |x – z| and when |x – z| is 

small, it reduces when x and z move closer to the origin. Simulation results of the maximum 

INL standard deviations are summarized in the Table 2. 

 

( )mNORM INLσ

tap voltage

( )mNORM INLσ

tap voltage 
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Table 2.  Simulation results of NORM−maxσ  

x=0.01 x =0.5 x= 0.95 
z 

σmax-NORM(INLm) ∆nEQ σmax-NORM (INLm) ∆nEQ σmax-NORM (INLm) ∆nEQ 

0.95 9.5 3.3 1.35 0.4 1.5 0.5 

0.5 5 2.3 1.03 0.04 2.5 1.3 

0.01 1 0 1.4 0.5 4.4 2.2 

 
Simulation results show that when x and z are small, for example, x = z = 0.01, the 

normalized maximum standard deviation, NORM−maxσ ,is approximately 1 and moving closer 

to the origin on the x = z line does not reduce the standard deviation appreciably below 1.   

Also shown in Table 2 is ΔnEQ, the effective number of bits of resolution lost relative to what 

would be achieved with an optimal area/impedance allocation.  When choosing x = z to attain 

the minimum standard deviation for a fixed x, the effective number of bits (ENOB) merely 

reduces by 0.04 bits when x = z = 0.5 and reduces by 0.5 bits when x = z = 0.95. However, if 

x is in the neighborhood of 1 and z in the neighborhood of 0 or vice versa, then the standard 

deviation will be very large. For example, in the case x =0.95, z = 0.01, the ENOB reduces 

by 2.2 bits and in the case x= 0.01, z = 0.95, the ENOB reduces by 3.3 bits.  It should be 

apparent that the implications of a non-optimal area/impedance allocation can have a 

dramatic impact on the yield of a DAC if the deviation from the optimal x = z line is large. 

Figure 12 shows the effects of different allocations of impedance and area throughout 

the x-z plane from a different perspective.  The continuous loci on this plot correspond to iso-

area contours and are labeled in terms of the increase in area needed to obtain a standard  

deviation equal to that obtained at the optimal point x = z = 0.   This provides some insight 

into the area penalty incurred to obtain the same yield if non-optimal area and impedance 
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allocations are used.  For example, the point  x = 0.1 and z= 0.7 lies on the 400% area 

contour indicating that a factor of 4 increase in area is required to obtain the same yield as 

would be obtained for an optimal area/impedance allocation.   

0 1
0

1

x

z

Figure 12.  Increasing Area to achieve the same INL 

The parameters x and z, as defined in (17) and (18) may partially obscure the relative 

effects of area and impedance on yield.  The effects of non-ideal impedance and area 

allocation is shown in the log(RF/RC) – x plane in Figure 13 where again the iso-area contours 

are used.  As an example, to maintain the same yield as in the optimal case, when the area of 

the coarse string is equal 
10
1 of the total area, the total area increases by 10% if RC= 4RF, it 

increases by 50% if RC = 2.2RF, and it increases by  more than 400% if RC = 2.3RF. 
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Figure 13.  Effect of selection of impedance and area 

3.1.2  Simulation results for different values of n and n1 

A comparison of the maximum standard deviation of the INLm for different n – bit 

DAC area and impedance partitioning strategies for the dual ladder DAC is also made. In this 

comparison, it will be assumed that the DAC have the same values of the total area and the 

total impedance for all n. A Matlab program was used for calculating the standard deviation 

of INL in the limiting case: x = z, and x -> 0 for different values of n and n1. This limiting 

case forms a tight lower bound on the standard deviation of the INL.  The  point (0,0) in the 

x-z plane is not realizable since it does not lie in the open unit square but values of x and z 

can be selected in the open unit square that are arbitrarily close to this point. These results 

show that the lower bound is strongly dependent upon n but independent of n1. The results 

are summarized in the Table 3.  
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Table 3.  The optimum ( )mNORM INLσ of the dual ladder DAC as n varies 

N 4 5 6 7 8 9 10 11 12 

( )mNORM INLσ  
1 1 1 1 1 1 1 1 1 

 

Additional simulation results for different values of x and z are included in Appendix 

A and Appendix B. It is seen that the effective number of bits (ENOB) reduces very slightly 

when (x,z) moves away from (x=0, z=0) on the locus x=z as indicated in the Theorem 4. 

However, ENOB reduces significantly for the case z=1-x. 

3.2  Interpretation of 2
mINLσ for Interpolation with buffer 

In this section, the performance of the Interpolation DAC with buffer is characterized 

mathematically by the equation (44) in the section 2.3. 

3.2.1  Simulation results for n =10 

To interpret the analysis presented in Section 2.3, graphical results of an interpolation 

DAC with n1 = 4, n=10 were characterized by equation (44) to compare the performance for 

a variety of impedances and layout area allocations.  

INL profile curves are in Figure 14 when x is 0.1, 0.5 and 0.94543 and 0.99, 

respectively. For each value of x, the INL profile looks like a ripple on which the local 

maxima and the local minima occur at coarse ladder taps and in mid taps of the fine ladders. 

Thus, there are total 112 +n  critical taps. The maximum variance happens at a sub-tap of the 

fine string located in the neighborhood of the middle tap, dependent on the impedance / area 

allocations. 
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Figure 14.   w.r.t the voltage position tap n=10, n1 =4 

The variance of INL is denoted by 2
mINLσ  in (30) is a function of 5 variables, the ratio 

of area x, the number bits on the coarse string n1, the number bits on the fine string n2, the tap 

position on the coarse string p, and the tap position on the fine string q. Analytical expression 

for statistical of INL such as the optimum value of mINLσ  is not mathematically implemeted. 

However, this information is very necessary for predicting the linear performance of the 

circuit as wel as knowledge of efficent designs. Therefore, computing simulations were used 

for guessing the criticals values of mINLσ .  

Figure 15 is the standard deviation 
mINLσ  using a Matlab program. It is clearly that the 

minimum of the standard deviation 
mINLσ obtained if the ratio x = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

TOT

n

A
A1

12  is around 0.95. 



www.manaraa.com

 43  

 

Otherwise, if most of area is used for layout fine resistors, the standard deviation 
mINLσ will 

increase more than 2 times for x smaller than 2.5. 

 

Figure 15.   w.r.t x for n1 =4, n2 = 6 
A comparison of the standard deviation of the INL for different values of the number 

bits on the coarse ladder n1 is simulated. Figure 16 show that if increasing the number bits on 

the coarse ladder string, the standard deviation mINLσ will decrease. The compensation of this 

benefits is the complexity of the coarse string layout. 
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Figure 16.   w.r.t. x for n1 = 3, 4, 5 

3.2.2  Simulation results for different value of n and n1 

A comparison of the maximum standard deviation of the INL for the conventional n – 

bit DAC area and impedance partitioning strategies for the dual ladder DAC is also made. In 

this comparison, it will be assumed that the DAC have the same values of the total area and 

the total impedance for all n. A Matlab program was used for calculating the minimum 

values the standard deviation of INL and the critical ratio x= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

TOT

n

A
A1

12 . The results are 

summarized in the Table 4.  
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Table 4.  The minimum of Standard deviation of INL and x to obtain the 

minimum value of the standard deviation of the INL 

n1 

n 
2 3 4 5 6 7 8 9 10 

NORM−maxσ  8.9         4 

x 0.82         

NORM−maxσ  17.8 16.9        5 

x 0.82 0.9        

NORM−maxσ  35.6 33.7 33       6 

x 0.82 0.9 0.95       

NORM−maxσ  71.1 67.7 66 65      7 

x 0.82 0.9 0.95 0.97      

NORM−maxσ  142 135 132 130 129     8 

x 0.82 0.9 0.95 0.97 0.99     

NORM−maxσ  285 271 264 260 258 257    9 

x 0.82 0.9 0.95 0.97 0.99 0.99    

NORM−maxσ  569 542 528 520 517 515 515   10 

x 0.82 0.9 0.95 0.97 0.99 0.99 0.99   

NORM−maxσ  1138 10834 1055 1040 1033 1029 1029 1029  11 

x 0.82 0.9 0.95 0.97 0.99 0.99 0.99 0.99  

NORM−maxσ  2276 2167 2110 2080 2067 2058 2058 2058 205812 

x 0.82 0.9 0.95 0.97 0.99 0.99 0.99 0.99 0.99 
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Increasing the resolution of the DAC will increase the standard deviation of the INL. 

In all cases, the wise strategies are placing most of the area on the coarse string, only 20% of 

the total area is used for the fine string layout. 

3.3  Interpretation of 2
mINLσ  for Interpolation with buffer resistors 

The performance interpretation of interpolation with buffer resistors of Figure 8 is 

investigated in this section by the formula of 2
mINLσ given by equation (69) in the section 2.4.  

3.3.1  Simulation results for n =10 

To interpretate the analysis presented in 2.4, graphical results of an interpolation 

DAC with buffer resistors for n1 = 4, n=10 were brought out to compare the performance of 

variety of impedances and layout areas allocation. The variance in the equation (69) is 

dependent on the total area, ATOT, and the process parameter, AρN. By normalizing the 

variance by A2
ρN /ATOT , the effects of z, and m on the INLm  can be practically depicted. 

With this normalization, (69) simplifies to NORM−maxσ   

 ( ) ( ) ( )
2

4
2

2

3
3

2

2
1

2

1
2 11122 11

a
M

a
zM

a
zM

a
zMINL nn

mNORM +
−

+
−

+≈σ  (71) 

INL profile curves are in Figure 17 and Figure 18 for the case z=0.1 and z=0.9 

respectively. For each case, the INL profile looks like a ripple on which the local maxima 

and the local minima occur at coarse ladder taps and in mid taps of the fine ladders. The 

maximum standard deviation position is dependent on the impedance / area allocations. 

 



www.manaraa.com

 47  

 

 

Figure 17.  The standard deviation profile for z=0.1 
From Figure 17, the maximum standard deviation of the red curve placing most the 

area on the coarse string while a small area on the fine string and buffer resistors is bigger 9 

times than the maximum standard deviation of the blue curve placing most the area on buffer 

resistors while a small area on the fine string and the coarse string. 
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Figure 18.  The standard deviation profile for z=0.9 

On the other hand, in the Figure 18 for the case z= 
1

12 R
R

n
TOT  large, the maximum standard 

deviation of the red curve placing most the area on the coarse string while a small area on the 

fine string and buffer resistors is smaller 2 times than the maximum standard deviation of the 

blue curve placing most the area on buffer resistors while a small area on the fine string and 

the coarse string. 

These two examples raise a question what is the optimum area and impedance 

allocation between the coarse resistors, the fine resistors and the buffer resistors. The 

equation to calculate the standard deviation in (69), (71) is a function of 4 variables: the ratio 

resistor z, the ratio of areas a1, a2, a3. If we can indicate the region of the optimum, the cost of 

the DAC design will lower by reducing the dice area to achieve the same yield. However, it 
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is impossible to obtain the mathematical expressions for the optimal area and impedance 

allocation. Computer simulations can be used for obtaining neiborhood regions of the 

optimum positions.  

Table 5 is results of simulations in Matlab. It is clear that to the ratio of the coarse 

string area to the total area is approximately equal to the ratio of the total resistance to the 

coarse string resistance while most of remaining area is placed on the buffer resistors. 

Table 5.  The optimum values of for n=10, n1 =4 

z a1 a2 a3 

The optimum 

of  

0.1 0.1 0.09 0.81 530 

0.2 0.2 0.09 0.71 530 

0.3 0.3 0.09 0.61 531 

0.4 0.4 0.09 0.51 532 

0.5 0.5 0.09 0.41 533 

0.6 0.6 0.09 0.31 535 

0.7 0.6 0.09 0.21 535 

0.8 0.7 0.09 0.11 536 

0.9 0.8 0.09 0.01 537 

3.3.1  Simulation results for different values of n 

A comparison of the standard deviation of the INL for the conventional different n – 

bit DAC area and impedance partitioning strategies for the dual ladder DAC is also made. In 

this comparison, it will be assumed that the DAC have the same values of the total area and 
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the total impedance for all n. A Matlab program was used for calculating the standard 

deviation of INL in the position near the optimum points. The results are summarized in the 

Table 6.  

Table 6.  The average values of  

n1 

n 
2 3 4 5 6 7 8 9 10 

4  8.8         

5  17.7 17        

6  35 34 33       

7  70 68 67 66      

8  140 136 132 132 133     

9  281 272 265 266 268 268    

10  563 543 530.4 531.1 533.7 535.2 536.5   

11  1123 1086 1061 1063 1067 1071 1072 1073  

12  2246 2173 2121 2126 2135 2141 2144 2146 2147

 

It is apparently that the standard deviation mINLσ increases with the number bits of 

DAC by nearly a factor of 2Δn. Furthermore, increase the number bits on the coarse string is 

not the efficient way to enhance the linear performance of the DAC. It is shown that the 

standard deviation mINLσ is nearly constant if the areas and impedances are allocated in a 

wisdom way. The data related to the area and inpedance allacation is in the Appendix C. 
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CHAPTER 4.  ASSESSMENT OF PRIOR WORKS AND VALIDATION 

OF ANALYTICAL RESULTS 

Although use of the dual-string DAC to manage gradients is a useful and well-known 

technique, there is little in the literature that addresses how area should be allocated between 

the coarse string and the fine string or how the relative impedances between the coarse string 

and the fine string should be chosen.  The results derived in Chapter 2 and interpreted in 

Chapter 3 show that the benefits of optimally allocating area and impedance can be most 

significant.   In fact, there is little in the literature to suggest that most designers are even 

aware of the importance of considering area allocation and impedance assignment when 

designing dual-string DACs.  In this chapter, an attempt will be made to assess the 

effectiveness of area allocation and impedance allocation in one of the few papers that 

provides enough information to make an assessment. 

The analytical expressions for the variance presented in Chapter 2 are quite 

complicated and considerable manipulative details were necessary to obtain these closed-form 

expressions.  The question naturally arises about whether any errors were made in these 

derivations.  A key component of these derivations was the linearization of the random 

variables that appeared in tap voltages and the INL expressions.  This linearization was 

necessary to obtain a mathematically tractable expression for the variance of a function that 

was dependent upon a large number of random variables that were assumed to be 

uncorrelated.  The question of how much error was introduced in these linearizations also 

naturally arises.   Although it is difficult to verify that no errors were made in the analytical 

derivations or separate possible errors in the derivations from errors introduced by the 
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linearizations, statistical simulations of special cases of the dual-string DAC can be made and 

the results can be compared with the analytical results developed in Chapter 2.  If close 

agreement between the simulated results and the analytical formulations is demonstrated, a 

reasonable level of confidence can be established that the analytical results correctly predict 

the performance of a dual-string DAC.  In this chapter, statistical simulations are used to 

validate the analytical results presented in Chapter 2.   

4.1  Assessment of Published Results 

One of the few, if not the only, published results that provide enough  details about the 

impedance and area allocations in the dual-ladder structure to assess the performance relative 

to the optimal area and impedance allocations came out of  Phillips.   This highly cited work 

was initially published by Pelgrom [Pelgrom, M. J. M. (1990)] and discussed more generally 

in a book by van de Plassche [Plassche, R. van de (2003)].  This work focused on a 10-bit 

DAC using the basic architecture of Figure 3.  In this work,  4 bits were allocated to the coarse 

string. The 16 coarse resistors, placed in a common-centroid layout using an antiparallel 

structure, were each nominally 125 Ω.  The fine string resistors were each nominally 75 Ω.   

Although the area allocation to the coarse and fine resistors in [Pelgrom, M. J. M. (1990)] was 

not given, a die photograph showed that the total area for the fine resistor string was 

approximately 7 times that for the coarse string. This total area for both the coarse array and 

the fine array includes the area required for resistor separation, contact placement, switch 

connections,  and other layout considerations.  The assumption will be made that the actual 

area ratios for the coarse and fine resistors is close to the total area ratio.  For convenience, it 

was assumed that  the fine area / coarse area ratio is 6.87.   Thus, using the terminology of 
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Section 2.2, the experimental structure reported by Pelgrom is assumed to be characterized by 

the parameters n = 10, n1 = 4,  x = 0.13, z = 0.97. This point, designated as [Pelgrom, M. J. M. 

(1990)],  is shown on the unit square in the x – z plane in Figure 19.  It is apparent that this 

point is not close to the x = z locus and not close to the Lower Variance Bound (LVB).  It can 

be seen from Figure 13 that since this point is so far removed from the x = z locus, the 

variance will be much larger than that achievable near the LVB point..  

1

1
RC<<RF

RC>>RF

AC<<AF AC>>AFLVB

x = z loc
us

[3]

 

Figure 19.  Characterization of design reported in [Pelgrom, M. J. M. (1990)] in the x-z 
plane 

Although there is not enough resolution in Table 12 to determine the actual area 

penalty associated with the non-optimal point (0.13, 0.97), using the results of Sec. 2.3, it can 

be shown that the area could be reduced by a factor of 7 with a near optimal impedance 

assignment even if the relative areas remain unchanged by moving to the point (0.13, 0.13) on 

the x = z line   while maintaining the same yield.  Alternatively,  while maintaining the same 
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yield, the area could be reduced by a factor of 5  by operating at the point  x = 0.793, z = 

0.986 or by a factor of 6 by operating at the point  x = 0.712, z = 0.789. 

4.2  Validation of   INL variance formulation 

The closed-form expressions for the output voltage of the DAC and correspondingly 

the variance of INLm such as those given in (33) and (34) of Chapter 2 are useful for engineers 

when designing and laying out the basic R-String DACs. However, considerable arithmetic 

operations were required to obtain these expressions and these arithmetic operations included 

making approximations that were based upon the assumption that that random component of 

the resistances is small compared to the nominal component.  The question of whether any 

errors occurred in the derivations or whether the approximations are justifiable naturally 

arises.  In this section we will attempt to validate the approach by comparing the analytical 

results with those obtained with an independent statistical simulation for a specific example.   

In this statistical simulation, 10,000 dual string 10-bit DACs were randomly generated 

with MATLAB code.  Each DAC had 4 bits in the coarse string.  The area and impedance 

allocations were selected to agree with those of [Pelgrom, M. J. M. (1990)], specifically (x = 

0.13, z = 0.97).  In this simulation, it was assumed that the resistors came from a truncated 

normal distribution characterized by 326.1 −= E
A

A

ToT

Nρ .  The truncation was used to throw 

out any resistor that deviated by more than  1% from the nominal value. Figure 20 shows a 

plot of INL profile obtaining from thus statistical simulation and compares results with those 

obtained from (33). From this plot, it is apparent that the analytical formulation of (33) is in 

close agreement with the statistical MATLAB simulation.   
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Figure 20.  The standard deviation profiles for Pelgrom case 
Similary, simulations of a sample population of 10,000 randomly generated DACs 

were also were run for the case x = 0.793, z = 0.986 and x = 0.712, z= 0.789 to compare with 

the results obtained from the formula (33). The results are shown in Figure 18 and Figure 19.  

Again, it can be seen that there is very close agreemnt between the analytical results of (33) 

and those obtained with the statistical MATLAB simulations.    

 

Figure 21.  The standard deviation profiles for the case x=0.793, z=0.986 
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Figure 22.  The standard deviation profiles for x=0.712, z=0.789 
Although these three statistical simulations do not prove that the analytical results of 

(33) are correct, the close agreement between the simulated results and the analytical 

formulation provides a high level of confidence that the analytical formulations are valid.  
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CHAPTER 5.  CONCLUSIONS 

 The effects of random variations in sheet resistance on the linearity performance of 

three different dual-ladder resistor string DACs were analytically characterized. A 

formulation of the INL was presented. The relation between linearity, area allocation, and 

impedance allocation were discussed and optimal area and impedance allocation strategies 

were presented.  

For the basic dual ladder DAC, optimal yield for a given total resistor area is achieved 

when the ratio of the coarse string area to the total area equals the ratio of the total resistance 

of the DAC to the coarse string resistance.    

For the dual ladder with buffer, the impedance and area allocation strategies for 

maximizing yield with a given total resistor area are quite different. . In this case, optimal 

performance requires allocating a higher percentage of the total area to the coarse string 

whereas the impedance allocation does not affect linearity performance. 

Finally, the impedance and area allocating strategies of the dual ladder with buffer 

resistors represents a higher-order system where closed-form expressions for optimal area 

and impedance allocations are more difficult to derive.  Simulation results suggest that 

impedance allocations comparable to that for the basic dual-string DAC will provide 

reasonably good performance and that most area should be allocated to the coarse string and 

the interpolation resistor with proportionally smaller area being allocated to the replacement 

resistors.  . 

In all cases, it has been shown either by analytical derivations or computer 

simulations that dramatic improvements in yield for a given total resistor area can be 
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obtained by using optimal or near optimal impedance and area allocation strategies for 

assigning impedance and area in dual-string DACs.  Equivalently, dramatic reductions in 

total resistor area for a given yield target can be obtained with optimal or near optimal 

impedance and area allocation strategies when compared to what is achievable with intuitive 

but non-optimal approaches.  Invariably, paralleling the reduction in cost associated with 

reducing resistor area will be an improvement in speed and a reduction in power since the 

relative parasitic capacitances will invariably be reduced when area is reduced.  
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APPENDIX A.  NORM−maxσ OF DUAL LADDER DACS FOR X=Z 

Table 7.  NORM−maxσ for n =4 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ 

1 1  1 0.005 1.15 0.2 2.25 1.2 7.13 2.8 

2 1  1 0.004 1.09 0.1 1.75 0.8 5.13 2.4 

 

Table 8.  NORM−maxσ for n =5 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 1  1 0.0063 1.15 0.21 2.31 1.21 7.06 2.82 

2 1  1 0.0054 1.1 0.13 1.81 0.86 5.06 2.34 

3 1  1 0.0045 1.06 0.08 1.44 0.52 3.63 1.86 

 

Table 9.  NORM−maxσ for n =6 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ 

1 1  1.01 0.007 1.15 0.21 2.3 1.2 7.09 2.83 

2 1  1 0.006 1.1 0.13 1.79 0.84 5.07 2.34 

3 1  1 0.005 1.05 0.07 1.45 0.54 3.66 1.87 
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Table 10.  NORM−maxσ for n =7 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ 

1 1  1.01 0.007 1.15 0.21 2.29 1.2 7.09 2.83 

2 1  1 0.006 1.1 0.13 1.79 0.84 5.07 2.34 

3 1  1 0.005 1.05 0.08 1.45 0.54 3.66 1.87 

4 1  1 0.003 1.03 0.04 1.25 0.32 2.69 1.43 

 

Table 11.  NORM−maxσ for n =8 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ 

1 1  1.01 0.007 1.15 0.21 2.29 1.2 7.09 2.83 

2 1  1 0.006 1.1 0.13 1.79 0.84 5.07 2.34 

3 1  1 0.005 1.05 0.08 1.45 0.54 3.65 1.87 

4 1  1 0.003 1.03 0.04 1.25 0.32 2.68 1.42 

Table 12.  NORM−maxσ for n =9 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ 

1 1  1.01 0.007 1.15 0.21 2.29 1.2 7.09 2.83 

2 1  1 0.006 1.1 0.13 1.79 0.84 5.07 2.34 

3 1  1 0.005 1.05 0.08 1.45 0.54 3.66 1.87 

4 1  1 0.003 1.03 0.04 1.25 0.32 2.68 1.42 

5 1  1 0.002 1.02 0.02 1.13 0.18 2.02 1.02 
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Table 13.  NORM−maxσ for n =10 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ 

1 1  1.01 0.007 1.15 0.21 2.29 1.2 7.09 2.83 

2 1  1 0.006 1.1 0.13 1.79 0.84 5.07 2.34 

3 1  1 0.005 1.05 0.08 1.45 0.54 3.65 1.87 

4 1  1 0.003 1.03 0.04 1.25 0.32 2.68 1.42 

5 1  1 0.002 1.01 0.01 1.13 0.18 2.02 1.02 

 

Table 14.  NORM−maxσ for n =11 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ 

1 1  1 0.007 1.15 0.21 2.29 1.2 7.09 2.83 

2 1  1 0.006 1.1 0.13 1.79 0.84 5.07 2.34 

3 1  1 0.004 1.05 0.08 1.45 0.54 3.66 1.87 

4 1  1 0.003 1.03 0.04 1.25 0.32 2.68 1.42 

5 1  1 0.002 1.01 0.02 1.13 0.18 2.02 1.02 

6 1  1 0.001 1.01 0.01 1.07 0.1 1.6 0.67 
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Table 15.  NORM−maxσ for n =12 

x=z 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ 

1 1  1 0.007 1.15 0.21 2.29 1.2 7.09 2.83 

2 1  1 0.006 1.1 0.13 1.79 0.84 5.07 2.34 

3 1  1 0.005 1.05 0.08 1.45 0.54 3.66 1.87 

4 1  1 0.004 1.03 0.04 1.25 0.32 2.68 1.42 

5 1  1 0.002 1.02 0.02 1.13 0.18 2.02 1.02 

6 1  1 0.001 1.01 0.01 1.07 0.09 1.6 0.67 
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APPENDIX B.  NORM−maxσ OF DUAL LADDER DACS FOR Z=1-X 

Table 16.  NORM−maxσ for n =4 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 3.3 2.86 1.52 1.15 0.2 6.5 2.7 70.13 6.1 

2 9.9 3.3 2.86 1.51 1.09 0.1 5.13 2.4 50.13 5.6 

 

Table 17.  NORM−maxσ for n =5 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 4.3 2.86 2.52 1.15 1.2 6.53 3.7 70.18 7.1 

2 9.9 4.3 2.86 2.52 1.1 1.1 5.08 3.3 50.18 6.6 

3 9.9 4.3 2.86 2.51 1.06 1.1 4.13 3 36.19 6.2 

 

Table 18.  NORM−maxσ for n =6 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 5.3 2.86 3.5 1.15 2.2 6.53 4.7 70.18 8.1 

2 9.9 5.3 2.86 3.5 1.1 2.1 5.08 4.3 50.18 7.6 

3 9.9 5.3 2.86 3.5 1.05 2.1 4.14 4 36.18 7.2 
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Table 19.  NORM−maxσ for n =7 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 6.3 2.86 4.52 1.15 3.2 6.53 5.7 70.18 9.1 

2 9.9 6.3 2.86 4.52 1.1 3.1 5.08 5.3 50.18 8.6 

3 9.9 6.3 2.86 4.51 1.05 3.1 4.14 5.1 36.18 8.2 

4 9.9 6.3 2.86 4.51 1.03 3 3.56 4.8 26.53 7.7 

 

Table 20.  NORM−maxσ for n =8 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 7.3 2.86 5.5 1.15 4.2 6.53 6.7 70.18 10.1 

2 9.9 7.3 2.86 5.5 1.1 4.1 5.09 6.3 50.18 9.6 

3 9.9 7.3 2.86 5.5 1.05 4.1 4.13 6 36.19 9.2 

4 9.9 7.3 2.85 5.5 1.03 4 3.55 5.8 26.53 8.7 

Table 21.  NORM−maxσ for n =9 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 8.3 2.86 6.52 1.15 5.2 6.54 7.7 70.18 11.1 

2 9.9 8.3 2.86 6.52 1.1 5.1 5.09 7.3 50.18 10.6 

3 9.9 8.3 2.86 6.51 1.05 5.1 4.14 7 36.18 10.2 

4 9.9 8.3 2.85 6.51 1.03 5 3.55 6.8 26.54 9.7 

5 9.9 8.3 2.85 6.51 1.02 5 3.22 6.7 20.03 9.3 
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Table 22.  NORM−maxσ for n =10 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 9.3 2.86 7.52 1.15 6.2 6.53 8.7 70.18 12.1 

2 9.9 9.3 2.86 7.52 1.09 6.1 5.09 8.3 50.18 11.6 

3 9.9 9.3 2.86 7.51 1.05 6.1 4.14 8 36.19 11.2 

4 9.9 9.3 2.85 7.51 1.03 6 3.55 7.8 26.54 10.7 

5 9.9 9.3 2.85 7.51 1.02 6 3.22 7.7 20.03 10.3 

 

Table 23.  NORM−maxσ for n =11 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 10.1 2.86 8.52 1.15 7.2 6.53 9.7 70.18 13.1 

2 9.9 10.1 2.86 8.52 1.1 7.1 5.09 9.3 50.18 12.6 

3 9.9 10.1 2.86 8.51 1.05 7.1 4.14 9 36.18 12.2 

4 9.9 10.1 2.85 8.51 1.03 7 3.56 8.8 26.53 11.7 

5 9.9 10.1 2.85 8.51 1.01 7 3.22 8.7 20.03 11.3 

6 9.9 10.1 2.85 8.51 1.01 7 3.04 8.6 15.8 11 
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Table 24.  NORM−maxσ for n =12 

x 

n1 
0.01 ΔnEQ 0.1 ΔnEQ 0.5 ΔnEQ 0.9 ΔnEQ 0.99 ΔnEQ

1 9.9 11.3 2.86 9.52 1.15 8.2 6.53 10.7 70.18 14.1 

2 9.9 11.3 2.86 9.52 1.1 8.1 5.09 10.3 50.18 13.6 

3 9.9 11.3 2.86 9.51 1.05 8.1 4.14 10 36.19 13.2 

4 9.9 11.3 2.85 9.51 1.03 8 3.56 9.8 26.53 12.7 

5 9.9 11.3 2.85 9.51 1.02 8 3.22 9.7 20.03 12.3 

6 9.9 11.3 2.85 9.51 1.01 8 3.04 9.6 15.8 12 

 



www.manaraa.com

 67  

 

APPENDIX C.  OF A DUAL LADDER DAC WITH BUFFER 
RESISTORS 

Table 25.  The minimum for n = 4, n1 =2 

x a1 a2 a3 Min  

0.1 0.1 0.19 0.71 8.87 

0.2 0.2 0.19 0.61 8.84 

0.3 0.3 0.19 0.51 8.84 

0.4 0.3 0.19 0.51 8.81 

0.5 0.4 0.19 0.41 8.76 

0.6 0.5 0.19 0.31 8.77 

0.7 0.6 0.19 0.21 8.8 

0.8 0.7 0.19 0.11 8.89 

0.9 0.7 0.19 0.11 8.89 
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Table 26.  The minimum for n = 5, n1 =2 

x a1 a2 a3 Min  

0.1 0.1 0.19 0.71 17.8 

0.2 0.2 0.19 0.61 17.7 

0.3 0.3 0.19 0.51 17.7 

0.4 0.3 0.19 0.51 17.6 

0.5 0.4 0.19 0.41 17.6 

0.6 0.5 0.19 0.31 17.5 

0.7 0.6 0.19 0.21 17.6 

0.8 0.7 0.19 0.11 17.8 

0.9 0.7 0.19 0.11 17.8 

Table 27.  The minimum for n = 6, n1 =2 

x a1 a2 a3 Min  

0.1 0.1 0.19 0.71 35.5 

0.2 0.2 0.19 0.61 35.4 

0.3 0.3 0.19 0.51 35.4 

0.4 0.3 0.19 0.51 35.2 

0.5 0.4 0.19 0.41 35.1 

0.6 0.5 0.19 0.31 35.1 

0.7 0.6 0.19 0.21 35.2 

0.8 0.7 0.19 0.11 35.6 

0.9 0.7 0.19 0.11 35.6 
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Table 28.  The minimum for n = 6, n1 =3 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 34 

0.2 0.2 0.09 0.71 34 

0.3 0.3 0.09 0.61 34 

0.4 0.4 0.09 0.51 34 

0.5 0.5 0.09 0.41 34 

0.6 0.5 0.09 0.41 34 

0.7 0.6 0.09 0.31 34 

0.8 0.7 0.09 0.21 34 

0.9 0.8 0.09 0.11 34 

Table 29.  The minimum for n = 7, n1 =2 

x a1 a2 a3 Min  

0.1 0.1 0.19 0.71 71 

0.2 0.2 0.19 0.61 70.8 

0.3 0.3 0.19 0.51 70.7 

0.4 0.3 0.19 0.51 70.4 

0.5 0.4 0.19 0.41 70.2 

0.6 0.5 0.19 0.31 70.2 

0.7 0.6 0.19 0.21 70.4 

0.8 0.7 0.19 0.11 71.1 

0.9 0.7 0.19 0.11 71.2 
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Table 30.  The minimum for n = 7, n1 =3 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 68 

0.2 0.2 0.09 0.71 68 

0.3 0.3 0.09 0.61 68 

0.4 0.4 0.09 0.51 68 

0.5 0.5 0.09 0.41 68 

0.6 0.5 0.09 0.41 68 

0.7 0.6 0.09 0.31 68 

0.8 0.7 0.09 0.21 68 

0.9 0.8 0.09 0.11 68 

Table 31.  The minimum for n = 8, n1 =2 

x a1 a2 a3 Min  

0.1 0.1 0.19 0.71 142.1 

0.2 0.2 0.19 0.61 141.5 

0.3 0.3 0.19 0.51 141.4 

0.4 0.3 0.19 0.51 140.9 

0.5 0.4 0.19 0.41 140.4 

0.6 0.5 0.19 0.31 140.3 

0.7 0.6 0.19 0.21 140.7 

0.8 0.7 0.19 0.11 142.2 

0.9 0.7 0.19 0.11 142.4 
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Table 32.  The minimum for n = 8, n1 =3 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 135.9 

0.2 0.2 0.09 0.71 135.8 

0.3 0.3 0.09 0.61 135.8 

0.4 0.4 0.09 0.51 135.9 

0.5 0.5 0.09 0.41 136 

0.6 0.5 0.09 0.41 136.1 

0.7 0.6 0.09 0.31 136.9 

0.8 0.7 0.09 0.21 135.8 

0.9 0.8 0.09 0.11 135.8 

Table 33.  The minimum for n = 8, n1 =4 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 132.6 

0.2 0.2 0.09 0.71 132.6 

0.3 0.3 0.09 0.61 132.7 

0.4 0.4 0.09 0.51 132.9 

0.5 0.5 0.09 0.41 133.2 

0.6 0.6 0.09 0.31 133.7 

0.7 0.6 0.09 0.31 133.8 

0.8 0.7 0.09 0.21 133.9 

0.9 0.8 0.09 0.11 134.1 
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Table 34.  The minimum for n = 9, n1 =2 

x a1 a2 a3 Min  

0.1 0.1 0.19 0.71 284.2 

0.2 0.2 0.19 0.61 283 

0.3 0.3 0.19 0.51 283 

0.4 0.3 0.19 0.51 281.8 

0.5 0.4 0.19 0.41 280.8 

0.6 0.5 0.19 0.31 280.7 

0.7 0.6 0.19 0.21 281.5 

0.8 0.7 0.19 0.11 284.5 

0.9 0.7 0.19 0.11 284.8 

Table 35.  The minimum for n = 9, n1 =3 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 271.9 

0.2 0.2 0.09 0.71 271.6 

0.3 0.3 0.09 0.61 271.6 

0.4 0.4 0.09 0.51 271.7 

0.5 0.5 0.09 0.41 272 

0.6 0.5 0.09 0.41 272.2 

0.7 0.6 0.09 0.31 271.9 

0.8 0.7 0.09 0.21 271.7 

0.9 0.8 0.09 0.11 271.7 
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Table 36.  The minimum for n = 9, n1 =4 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 265.1 

0.2 0.2 0.09 0.71 265.2 

0.3 0.3 0.09 0.61 265.4 

0.4 0.4 0.09 0.51 265.8 

0.5 0.5 0.09 0.41 266.4 

0.6 0.6 0.09 0.31 267.4 

0.7 0.6 0.09 0.31 267.6 

0.8 0.7 0.09 0.21 267.8 

0.9 0.8 0.09 0.11 268.3 

Table 37.  The minimum  for n = 10, n1 =2 

x a1 a2 a3 Min  

0.1 0.1 0.19 0.71 568.3 

0.2 0.2 0.19 0.61 566 

0.3 0.3 0.19 0.51 565.7 

0.4 0.3 0.19 0.51 563.6 

0.5 0.4 0.19 0.41 561.7 

0.6 0.5 0.19 0.31 561.4 

0.7 0.6 0.19 0.21 563 

0.8 0.7 0.19 0.11 568.9 

0.9 0.7 0.19 0.11 569.7 
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Table 38.  The minimum  for n = 10, n1 =3 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 543.7 

0.2 0.2 0.09 0.71 543.2 

0.3 0.3 0.09 0.61 543.1 

0.4 0.4 0.09 0.51 543.4 

0.5 0.5 0.09 0.41 544.1 

0.6 0.5 0.09 0.41 544.4 

0.7 0.6 0.09 0.31 543.8 

0.8 0.7 0.09 0.21 543.4 

0.9 0.8 0.09 0.11 543.3 

Table 39.  The minimum  for n = 10, n1 =4 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 530.3 

0.2 0.2 0.09 0.71 530.4 

0.3 0.3 0.09 0.61 530.8 

0.4 0.4 0.09 0.51 531.5 

0.5 0.5 0.09 0.41 532.7 

0.6 0.6 0.09 0.31 534.7 

0.7 0.6 0.09 0.31 535.2 

0.8 0.7 0.09 0.21 535.7 

0.9 0.8 0.09 0.11 536.5 
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Table 40.  The minimum  for n = 10, n1 =5 

x a1 a2 a3 Min  

0.1 0.1 0.09 0.81 531.5 

0.2 0.2 0.09 0.71 532.1 

0.3 0.3 0.09 0.61 532.9 

0.4 0.4 0.09 0.51 534 

0.5 0.5 0.09 0.41 535.4 

0.6 0.5 0.09 0.41 536.9 

0.7 0.6 0.09 0.31 536.7 

0.8 0.7 0.09 0.21 536.8 

0.9 0.8 0.09 0.11 537.2 
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